Compartmentalized signaling of Ras in fission yeast.

نویسندگان

  • Brian Onken
  • Heidi Wiener
  • Mark R Philips
  • Eric C Chang
چکیده

Compartment-specific Ras signaling is an emerging paradigm that may explain the multiplex outputs from a single GTPase. The fission yeast, Schizosaccharomyces pombe, affords a simple system in which to study Ras signaling because it has a single Ras protein, Ras1, that regulates two distinct pathways: one that controls mating through a Byr2-mitogen-activated protein kinase cascade and one that signals through Scd1-Cdc42 to maintain elongated cell morphology. We generated Ras1 mutants that are restricted to either the endomembrane or the plasma membrane. Protein binding studies showed that each could interact with the effectors of both pathways. However, when examined in ras1 null cells, endomembrane-restricted Ras1 supported morphology but not mating, and, conversely, plasma membrane-restricted Ras1 supported mating but did not signal to Scd1-Cdc42. These observations provide a striking demonstration of compartment-specific Ras signaling and indicate that spatial specificity in the Ras pathway is evolutionarily conserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of the fission yeast septation initiation network (SIN).

The fission yeast septation initiation network, or SIN, is a signal transduction network that is required for septum formation in Schizosaccharomyces pombe. Its activity is tightly regulated through the cell cycle, to ensure proper co-ordination of mitosis and cytokinesis. SIN signalling requires three protein kinases for its function and is mediated by a ras-superfamily GTPase. We discuss the ...

متن کامل

Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2.

Dysfunctional mitochondria show a reduced capacity for fusion and, as mitochondrial fission is maintained, become spatially separated from the intact network. By that mechanism, dysfunctional mitochondria have been proposed to be targeted for selective degradation by mitophagy, thereby providing a quality control system for mitochondria. In yeast, conflicting results concerning the role of mito...

متن کامل

Compartmentalized nodes control mitotic entry signaling in fission yeast

Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions bet...

متن کامل

Cloning and characterization of shk2, a gene encoding a novel p21-activated protein kinase from fission yeast.

We describe the characterization of a novel gene, shk2, encoding a second p21(cdc42/rac)-activated protein kinase (PAK) homolog in fission yeast. Like other known PAKs, Shk2 binds to Cdc42 in vivo and in vitro. While overexpression of either shk2 or cdc42 alone does not impair growth of wild type fission yeast cells, cooverexpression of the two genes is toxic and leads to highly aberrant cell m...

متن کامل

Compartmentalized signalling of Ras.

Ras proteins associate with cellular membranes by virtue of a series of post-translational modifications of their C-terminal CAAX sequences. The discovery that two of the three enzymes that modify CAAX proteins are restricted to the endoplasmic reticulum led to the recognition that all nascent Ras proteins transit endomembranes en route to the PM (plasma membrane) and that at steady-state N-Ras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 24  شماره 

صفحات  -

تاریخ انتشار 2006